Solution 5

1. In class we showed that the set $P=\{f: f(x)>0, \forall x \in[a, b]\}$ is an open set in $C[a, b]$. Show that it is no longer true if the norm is replaced by the L^{1}-norm. In other words, for each $f \in P$ and each $\varepsilon>0$, there is some continuous g which is negative somewhere such that $\|g-f\|_{1}<\varepsilon$.

Solution. Fix a point, say, a and consider the continuous piecewise function φ_{k} which is equal to 1 at a and vanishes on $[a+1 / k, b]$. Then

$$
\int_{a}^{b} \varphi_{k}(x) d x=\frac{1}{2 k}
$$

Let $f \in C[a, b]$ and $g_{k}=f-(f(a)+1) \varphi_{k}$ also belongs to $C[a, b]$ and $g_{k}(a)=-1<0$, but

$$
\left\|f-g_{k}\right\|_{1}=\int_{a}^{b}\left|f(x)-g_{k}(x)\right| d x=\frac{f(a)+1}{2 k} \rightarrow 0
$$

as $k \rightarrow \infty$.
2. Show that $[a, b]$ can be expressed as the intersection of countable open intervals. It shows in particular that countable intersection of open sets may not be open.
Solution. Simply observe

$$
[a, b]=\bigcap_{j=1}^{\infty}(a-1 / j, b+1 / j)
$$

3. Optional. Show that every open set in \mathbb{R} can be written as a countable union of disjoint open intervals. Suggestion: Introduce an equivalence relation $x \sim y$ if x and y belongs to the same open interval in the open set and observe that there are at most countable many such intervals.

Solution.

Let V be open in \mathbb{R}. Fix $\mathrm{x} \in V$, there exists some open interval $I, \mathrm{x} \in I, I \subseteq V$. Let I_{α} $=\left(a_{\alpha}, b_{\alpha}\right), \alpha \in \mathcal{A}$, be all intervals with this property. Let

$$
I_{x}=\left(a_{x}, b_{x}\right), a_{x}=\inf _{\alpha} a_{\alpha}, b_{x}=\sup _{\alpha} b_{\alpha}
$$

satisfy $\mathrm{x} \in I_{x}, I_{x} \subseteq V$ (the largest open interval in V containing x). It is obvious that $I_{x} \cap I_{y} \neq \phi \Rightarrow I_{x}=I_{y}$. Let $x \sim y$ if $I_{x}=I_{y}$. Then one can show that \sim is an equivalence relation. By the discussion above, we have

$$
V=\bigcup_{x \in V} I_{x}=\bigcup_{[x] \in V / \sim}\left(\bigcup_{y \sim x} I_{x}\right)=\bigcup_{[x] \in V / \sim} I_{x}
$$

which is a disjoint union. Moreover V / \sim is at most countable since we can pick a rational number in each I_{x} to represent the class $[x] \in V / \sim$. Thus V can be written as a countable union of disjoint open intervals.
4. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R} :
(a) $[1,2) \cup(2,5) \cup\{10\}$.
(b) $[0,1] \cap \mathbb{Q}$.
(c) $\bigcup_{k=1}^{\infty}(1 /(k+1), 1 / k)$.
(d) $\{1,2,3, \cdots\}$.

Solution.

(a) Boundary points: $1,2,5,10$. Interior points: $(1,2),(2,5)$. Interior: $(1,2) \cup(2,5)$. Closure: $[1,5] \cup\{10\}$.
(b) Boundary points: All points in $[0,1]$. No interior point. Interior: the empty set ϕ. Closure: $[0,1]$
(c) Boundary points: $\{1 / k: k \geq 1\}, 0$. Interior points: all points in this set. Interior: This set (because it is an open set). Closure: $[0,1]$.
(d) Boundary points $1,2,3, \cdots$. No interior points. Interior: ϕ. Closure: the set itself (it is a closed set).
5. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^{2} :
(a) $R \equiv[0,1) \times[2,3) \cup\{0\} \times(3,5)$.
(b) $\left\{(x, y): 1<x^{2}+y^{2} \leq 9\right\}$.
(c) $\mathbb{R}^{2} \backslash\{(1,0),(1 / 2,0),(1 / 3,0),(1 / 4,0), \cdots\}$.

Solution.

(a) Boundary points: the geometric boundary of the rectangle and the segment $\{0\} \times$ $[3,5]$. Interior points: all points inside the rectangle. Interior $(0,1) \times(3,5)$. Closure $[0,1] \times[3,5] \cup\{0\} \times[3,5]$.
(b) Boundary points: all (x, y) satisfying $x^{2}+y^{2}=1$ or $x^{2}+y^{2}=9$. Interior points: all points satisfying $1<x^{2}+y^{2}<9$. Interior $\left\{(x, y): 1<x^{2}+y^{2}<9\right\}$. Closure $\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 9\right\}$.
(c) Boundary points: $(0,0),(1,0),(1 / 2),(1 / 3,0), \cdots$. Interior points: all points except boundary points. Interior: $\mathbb{R}^{2} \backslash\{(0,0),(1,0),(1 / 2),(1 / 3,0), \cdots\}$. Closure: \mathbb{R}^{2}.
6. Describe the closure and interior of the following sets in $C[0,1]$:
(a) $\{f: f(x)>-1, \forall x \in[0,1]\}$.
(b) $\{f: f(0)=f(1)\}$.

Solution.

(a) Closure: $\{f \in C[0,1]: f(x) \geq-1, \forall x \in[0,1]\}$. Interior: The set itself. It is an open set.
(b) Closure: The set itself. It is a closed set. Interior: ϕ. Let f satisfy $f(0)=f(1)$. For every $\varepsilon>0$, it is clear we can find some $g \in C[0,1]$ satisfying $\|g-f\|_{\infty}<\varepsilon$ but $g(0) \neq g(1)$. It shows that every metric ball $B_{\varepsilon}(f)$ must contain some functions lying outside this set.
7. Let A and B be subsets of (X, d). Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$. Does $\overline{A \cap B}=\bar{A} \cap \bar{B}$?

Solution. We have $\bar{A} \subset \bar{B}$ whenever $A \subset B$ right from definition. So $\bar{A} \cup \bar{B} \subset \overline{A \cup B}$. Conversely, if $x \in \overline{A \cup B}, B_{\varepsilon}(x)$ either has non-empty intersection with A or B. So there exists $\varepsilon_{j} \rightarrow 0$ such that $B_{\varepsilon_{j}}(x)$ has nonempty intersection with A or B, so $x \in \bar{A} \cup \bar{B}$.

On the other hand, $\overline{A \cap B}=\bar{A} \cap \bar{B}$ is not always true. For instance, consider intervals (a, b) and (b, c). We have $\overline{(a, b)} \cap \overline{(b, c)}=\{b\}$ but $\overline{(a, b) \cap(b, c)}=\phi$. Or you take A to be the set of all rationals and B all irrationals. Then $\overline{A \cap B}=\bar{\phi}=\phi$ but $\bar{A} \cap \bar{B}=\mathbb{R}$!
8. Show that $\bar{E}=\{x \in X: d(x, E)=0\}$ for every non-empty $E \subset X$.

Solution. Let $A=\{x \in X: d(x, E)=0\}$. Claim that A is closed. Let $x_{n} \rightarrow x$ where $x_{n} \in A$. Recalling that $x \mapsto d(x, E)$ is continuous, so $d(x, E)=\lim _{n \rightarrow \infty} d\left(x_{n}, E\right)=0$, that is, $x \in A$. We conclude that A is a closed set. As it clearly contains E, so $\bar{E} \subset A$ since the closure of E is the smallest closed set containing E. On the other hand, if $x \in A$, then $B_{1 / n}(x) \cap E \neq \phi$. Picking $x_{n} \in B_{1 / n}(x) \cap E$, we have $\left\{x_{n}\right\} \subset E, x_{n} \rightarrow x$, so $x \in \bar{E}$.

